

Spintronics: basic principles and emerging trends

Riccardo Bertacco riccardo.bertacco@polimi.it

Riccardo Bertacco

1. Introduction to classical (Mott) spintronics

- ✓ GMR, TMR
- ✓ STT-MRAMs

2. Magnon spintronics

- Spin waves and related devices
- Thermally assisted magnetic scanning probe lithography" (tam-SPL)
- Applications to magnonics

1. Introduction to classical (Mott) spintronics

- ✓ GMR, TMR
- ✓ STT-MRAMs
- **2.** Magnon spintronics
 - ✓ Spin waves and related devices
 - Thermally assisted magnetic scanning probe lithography" (tam-SPL)
 - Applications to magnonics

Spintronics paradigms

Sinova, J. and Žutic, I. Nat. Mater., 11 (5): 368–371, May 2012.

Original idea: N. F. Mott, Proc. Roy. Soc. A153, 699 (1936)

First experimental evidence for spin dependent transport: A. Fert and I. A. Campbell, Phys. Rev. Lett. 21, 1190 (1968) – Ni/Fe alloys

Basic idea: conduction in independent parallel channels by the spin↑ (majority) and spin↓ (minority) electrons. *The spin flip scattering of the conduction electrons by magnons is frozen out, the spin mixing rate is much smaller than the momentum relaxation rate.*

Eigenstates:

$${m \psi}_{{}_{j,s,{f k}}}({f r}$$

j : layer in the structure s: spin channel

Eigenvalues:

$$\varepsilon_{j,s}(\mathbf{k})$$

up and down bands

DOS (up and down):
$$n_{j,s}(E) = \sum_{\mathbf{k}} \delta(E - \varepsilon_{j,s}(\mathbf{k}))$$

This is the Stoner description or band description of a ferromagnet

Spin dependent electronic structure

Ultrathin Magnetic Nanostructures III, Springer Verlag (2005)

Riccardo Bertacco

The Nobel Prize in Physics 2007

Photo: U. Montan Albert Fert Prize share: 1/2

Photo: U. Montan Peter Grünberg Prize share: 1/2

Giant Magneto Resistance

POLITECNICO DI MILANO

The Nobel Prize in Physics 2007 was awarded jointly to Albert Fert and Peter Grünberg "for the discovery of Giant Magnetoresistance"

GMR and magnetic recording

Riccardo Bertacco

The discovery of GMR (1988)

[1] M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne,G. Creuzet, A. Friederich, and J.Chazelas, Phys. Rev. Lett. 61, 2472 (1988)

[2] G. Binash, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B **39**, 4828 (1989) (trilayer)

GMR: a simple model

- Spin dependent scattering due to defects and impurities in magnetic layers as well as at interfaces
- CPP configuration

Exchange bias

Spin valve (1991)

Riccardo Bertacco

Tunneling magnetoresistance

Riccardo Bertacco

Jullière model for TMR (1975)

Fe/GeO_x/Co

Assumptions:

- Spin conservation during tunneling
- Constant transmission coefficients, independent on magnetization and energy
 Small applied voltage

$$\begin{split} G_{P} &= G_{\uparrow\uparrow} + G_{\downarrow\downarrow} \propto D_{1\uparrow} D_{2\uparrow} + D_{1\downarrow} D_{2\downarrow} \\ G_{AP} &= G_{\uparrow\downarrow} + G_{\downarrow\uparrow} \propto D_{1\uparrow} D_{2\downarrow} + D_{1\downarrow} D_{2\uparrow} \end{split}$$

$$P_{1} = \frac{D_{1\uparrow} - D_{1\downarrow}}{D_{1\uparrow} + D_{1\downarrow}} \qquad TMR = \frac{R_{AP} - R_{P}}{R_{P}} = \frac{G_{P} - G_{AP}}{G_{AP}} = \frac{2P_{1}P_{2}}{1 - P_{1}P_{2}}$$

It works, especially in case of Al_2O_3 barriers.

Fe/MgO/Fe: Coherent tunneling

TMR (RT) MTJ conventional (Al2O3) ~ 70%

TMR (RT) MTJ Fe/MgO/Fe ~ 800% (theoretical value = 1000%)

15

S. Yuasa et al, Nature Materials, 3 868i(2004) Bertacco

Symmetry based spin filtering

C. Tiusan et al, J.Phys.:Cond. Matter 19 165201 2007

Different attenuation in the barrier depending on the symmetry of states

Majority Density of States for Fe|MgO|Fe

Riccardo Bertacco

POLITECNICO DI MILANO

Minority Density of States for FelMgO|Fe

Application to non-volatile MRAMs: the writing issue

Current lines

Thermally assisted cell writing

POLITECNICO DI MILANO

Spin transfer torque (2001)

N. Locatelli, V. Cros and J. Grollier, Nature Materials, 13,11 (2014)

Riccardo Bertacco

The in-plane torque is therefore useful for stabilizing the magnetization in its equilibrium position, or, on the contrary, to destabilize it to bring it to another equilibrium situation.

The out-of-plane torque, often called field-like torque, it can emulate the action of a field on M_{free} , which means that it can modify the energy landscape seen by the magnetization.

Magnetization dynamics with in-plane spin torque

Spin-torque building blocks

Riccardo Bertacco

- **1.** Introduction to classical (Mott) spintronics
 - ✓ GMR, TMR
 - ✓ STT-MRAMs

2. Magnon spintronics

- Spin waves and related devices
- Thermally assisted magnetic scanning probe lithography" (tam-SPL)
- Applications to magnonics

REVIEW ARTICLE PUBLISHED ONLINE: 2 JUNE 2015 | DOI: 10.1038/NPHYS3347

Magnon spintronics

A. V. Chumak*, V. I. Vasyuchka, A. A. Serga and B. Hillebrands

Exchange SW: spin flip delocalized over the entire lattice, strong short range exchange interaction (λ <1mm)

Dipolar or magnetostatic waves (MSWs)

Long-range dipolar interaction (λ >1mm), excitation/detection via antennas

For in plane magnetization

Magnetostatic surface waves (MSSWs, also known as Damon–Eshbach waves) k parallel to M

Backward volume magnetostatic waves (BVMSWs)

k perpendicular to M

Philipp Wessels et al., Sci. Rep. 6:22117 | DOI: 10.1038/srep22117

Riccardo Bertacco

Proposed devices

Riccardo Bertacco

ARTICLES PUBLISHED ONLINE: 7 MARCH 2016 | DOI: 10.1038/NNANO.2016.25

Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography

E. Albisetti^{1,2*}, D. Petti¹, M. Pancaldi³, M. Madami⁴, S. Tacchi⁵, J. Curtis², W. P. King⁶, A. Papp⁷, G. Csaba⁷, W. Porod⁷, P. Vavassori^{3,8}, E. Riedo^{2,9*} and R. Bertacco^{1,10*}

Conventional technologies for magnetic patterning

Top-down: lithography

M. Donolato et al., Adv. Mater. 2010, 22, 2706/2710

Ion irradiation

Planar Patterned Magnetic Media Obtained by Ion Irradiation

C. Chappert, H. Bernas, J. Ferré, V. Kottler, J.-P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, H. Launois SCIENCE VOL. 280, 19 JUNE 1998

Destructive, irreversible and not suitable to easily produce a vectorial modulation of the magnetic properties within the pattern.

- ✓ Non destructive and single step
- ✓ Extremely robust upon application of external magnetic fields

Riccardo Bertacco

- ✓ Fine tuning of magnetic anisotropy for patterning magnetic landscapes
- ✓ Fully reversible (cancel and re-write)

Magnetic patterning via tam-SPL

 H_W =700 Oe

$$F_z = \mu_0 m_z \cdot (\nabla H_z)_z$$

Riccardo Bertacco

Tunability

Tuning the exchange bias field

POLITECNICO DI MILANO

Riccardo Bertacco

An example of application to magnonics

Anisotropic propagation of spin-waves (OOMMF simulation)

In terms of the refractive index seen by magnons:

$$\frac{n_{\rm H}}{n_{\rm \perp}} = 1.6$$

How to implement a phase shifter

The basic building block of a Mach-Zehnder SW interferometer, where one of the two branches contains a phase shifter.

Magnonic crystals (MCs) patterned via tam-SPL

Advantages

- 1. MCs patterned in a continuous film: lower SW attenuation expected.
- 2. Fine tailoring of magnetic anisotropy or refractive index easily implemented
- 3. AFM fabrication: suitable for concept development
- 4. Flexibility and rewritability: ideal tool for scientists
- 5. Reprogrammability via external magnetic fields

Selective excitation and propagation of SWs in patterned magnetic tracks

POLITECNICO DI MILANO

CMOS

Photonics

Riccardo Bertacco

Thank you for your attention!

Riccardo Bertacco