

MEMS at PoliFAB

Federico Maspero^a, Simone Cuccurullo^b, Riccardo Bertacco^{a,b}

^a CNR-IFN, ^b Politecnico di Milano

MEMS (Micro-Electro-Mechanical Systems) are miniaturized sensors and actuators that combine micromechanical parts with electrical components.

MEMS applications

MEMS can be found in a wide range of systems comprising automotive, medical, electronics, communication or defense applications.

MEMS process

Within the frame of the European project OXiNEMS and the Joint Research Center with STMicroelectronics, two MEMS processes have been developed to integrate functional materials (magnetic, piezoelectric, etc.) with MEMS.

SOI process

SiN process

1. SOI wafer

1. SiN/Si/SiN wafer

MEMS in automotive vehicles are accelerometers for airbag deployment, gyroscopes for Electronic Stability Control, pressure sensors for oil, tires, etc.

Accelerometers, gyroscopes, microphones, and RF-filters are some examples of MEMS sensors installed in every smartphones.

Displays for augmented reality rely on **MEMS micro-mirrors** for obtaining a large display area from a

2. Material deposition

3. Reactive-ion etching

4. Wet release in HF

2. Backside wet etch in KOH

3. Material deposition

4. Reactive-ion etching

small light source.

Fabricated devices

SOI process

SiN process

Future applications

MEMS technology will play a fundamental role in tomorrow applications...

MEMS for silicon photonics [1]

MEMS quantum dots [2]

... and will **improve the performances** of the existing ones

MEMS THz absorber [3]

MEMS logic port [4]

References

[1] Quack, N. et al. (2016). Scalable row/column addressing of silicon photonic MEMS switches. IEEE Photonics Technology Letters, 28(5), 561-564. [2] Zhang, Y. et al. (2016). Monolithically integrated microelectromechanical systems for on-chip strain engineering of quantum dots. *Nano letters*, 16(9), 5785-5791.

[3] Liu, M. et al. (2017). Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial. *Microsystems & nanoengineering*, 3(1), 1-6. [4] Song, Y. et al. (2019). Additively Manufacturable Micro-Mechanical Logic Gates. *Nature Communications 10*, 1–6.

Contact info

Federico Maspero federico.maspero@polimi.it